Phương trình logarit và bất phương trình logarit cũng là một trong những nội dung toán lớp 12 bao gồm trong đề thi THPT tổ quốc hàng năm, vị vậy các em đề nghị nắm vững.

Bạn đang xem: Cách tính phương trình logarit


Để có thể giải được những phương trình và bất phương trình logarit những em cần nắm rõ kiến thức về hàm số logarit đang được họ ôn ở bài viết trước, nếu chưa nhớ các tính chất của hàm logarit các em hoàn toàn có thể xem lại Tại Đây.

I. PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH LOGARIT

1. Phương trình Logarit cơ bản

+ Phương trình logax = b (0b với đa số b

2. Bất phương trình Logarit cơ bản

+ Xét bất phương trình logax > b:

- giả dụ a>1 thì logax > b ⇔ x > ab

- giả dụ 0ax > b ⇔ 0 b

II. PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH LOGARIT

1. Giải phương trình logarit, bất PT logarit bằng phương thức đưa về cùng cơ số

logaf(x) = logag(x) ⇔ f(x) = g(x)

logaf(x) = b ⇔ f(x) = ab

+ lưu giữ ý: Đối với những PT, BPT logarit ta cần đặt đk để các biểu thức logaf(x) tất cả nghĩa, tức là f(x) ≥ 0.

2. Giải phương trình, bất PT Logarit bằng phương pháp đặt ẩn phụ

+ Với những phương trình, bất PT logarit mà hoàn toàn có thể biểu diễn theo biểu thức logaf(x) thì ta rất có thể sử dụng phép để ẩn phụ t = logaf(x).

+ Ngoài việc đặt điều kiện để biểu thức logaf(x) tức là f(x) > 0, bọn họ cần phải để ý đến điểm sáng của PT, BPT logarit đã xét (có đựng căn, bao gồm ẩn ở mẫu hay không) lúc đó ta phải đặt điều kiện cho những PT, BPT này còn có nghĩa.

Xem thêm: Nhận Xét Sổ Liên Lạc Tiểu Học, Mẫu Nhận Xét Học Sinh Tiểu Học Theo Thông Tư 22

3. Giải phương trình, bất PT logarit bằng phương pháp mũ hoá

+ Đôi lúc ta quan trọng giải một phương trình, bất PT logarit bằng phương pháp đưa về cùng một cơ số hay dùng ấn phụ được, lúc ấy ta thể đặt x = at PT, BPT cơ bản (phương pháp này điện thoại tư vấn là mũ hóa)

+ dấu hiệu nhận biết: PT loại này thường chứa nhiều cơ số không giống nhau

II. BÀI TẬP VỀ PHƯƠNG TRÌNH LOGARIT VÀ BẤT PT LOGARIT

* Giải PT, BPT Logarit áp dụng cách thức cùng cơ số

Bài tập 1: Giải các phương trình sau

a) log3(2x+1) = log35

b) log2(x+3) = log2(2x2-x-1)

c) log5(x-1) = 2

d) log2(x-5) + log2(x+2) = 3

* Lời giải:

a) ĐK: 2x+1 > 0 ⇔ x>(-1/2)

PT ⇔ 2x+1 = 5 ⇔ 2x = 4 ⇔ x = 2 (thoả ĐK)

b) ĐK: x+3>0, 2x2 - x - 1 > 0 ta được: x>1 hoặc (-3)2(x+3) = log2(2x2-x-1) ⇔ x+3 = 2x2 - x - 1 ⇔ 2x2 - 2x - 4 = 0

⇔ x2 - x - 2 = 0 ⇔ x = -1 (thoả) hoặc x = 2 (thoả)

c) ĐK: x - 1 > 0 ⇔ x > 1

Ta có: log5(x-1) = 2 ⇔ x-1 = 52 ⇔ x = 26 (thoả)

d) ĐK: x-5 > 0 với x + 2 > 0 ta được: x > 5

Ta có: log2(x-5) + log2(x+2) = 3 ⇔ log2(x-5)(x+2) = 3 ⇔ (x-5)(x+2) = 23

⇔ x2 - 3x -18 = 0 ⇔ x = -3 (loại) hoặc x = 6 (thoả)

* Giải phương trình Logarit bằng phương thức đặt ẩn phụ

Bài tập 2: Giải các phương trình sau

a) 

*

b) 

*

c) 

*

d) 

*

e) 1 + log2(x-1) = log(x-1)4

* Lời giải:

a) ĐK: x>0

Ta đặt t=log3x khi đó PT ⇔ t2 + 2t - 3 = 0 ⇔ t =1 hoặc t = -3

Với t = 1 ⇔ log3x = 1 ⇔ x = 3

Với t = -3 ⇔ log3x = -3 ⇔ x = 3-3 = 1/27

b) 4log9x + logx3 - 3 = 0 ĐK: 03x + 1/log3x -3 = 0

Ta đặt t = log3x lúc ấy PT ⇔ 2t + 1/t - 3 = 0 ⇔ 2t2 - 3t + 1 = 0 ⇔ t=1 hoặc t = 1/2

Với t = 1 ⇔ log3x = 1 ⇔ x = 3 (thoả)

Với t = 50% ⇔ log3x = 1/2 ⇔ x = √3 (thoả)

c) ĐK: log3x tất cả nghĩa ⇔ x > 0

 Các chủng loại của phân thức đề nghị khác 0: (5+log3x)≠0 với (1 +log3x)≠0 ⇔ log3x ≠ -5 và log3x ≠ -1

 Ta đặt t = log3x (t ≠ -1, t ≠ -5) khi đó:

 

*
 

⇔ (1+t) +2(5+t)=(1+t)(5+t) ⇔ 3t + 11 = t2 + 6t + 5 ⇔ t2 + 3t - 6 = 0

⇔ 

*
 (thoả ĐK)

 thay t=log3x ta được kết quả: x =3t1 và x =3t2

d) 

*
 ĐK: x>0

 PT⇔ 

*

Đặt t=log2x Ta được PT: t2 + t - 2 = 0 ⇔ t = 1 hoặc t = -2

Với t = 1 ⇔ x = 2 

Với t = -2 ⇔ x = 1/4

e) 1 + log2(x-1) = log(x-1)4

 ĐK: 02(x-1) ta tất cả PT: 1+t = 2/t ⇔ t2 + t - 2 = 0 ⇔ t = 1 hoặc t = -2

Với t = 1 ⇔ x-1 = 2 ⇔ x = 3

Với t = -2 ⇔ x-1 = 1/4 ⇔ x= 5/4.

* Giải phương trình Logarit áp dụng phương thức mũ hoá

Bài tập 3: Giải các phương trình sau:

a) ln(x+3) = -1 + √3

b) log2(5 – 2x) = 2 – x 

* Lời giải:

a) ĐK: x-3>0 ⇔ x>3 với điều kiện này ta nón hóa 2 vế của PT đã mang đến ta được PT:

*

*
 (thoả)

b) log2(5 – 2x) = 2 – x 

 ĐK: 5 - 2x > 0 ⇔ 2x x (t>0,tx2 - 5t + 4 = 0

 ⇔ t = 1 (thoả) hoặc t =4 (thoả)

 Với t = 1 ⇔ x = 0

 Với t = 4 ⇔ x = 2

Bài tập 4: Giải những bất phương trình sau

a) log0,5(x+1) ≤ log2(2-x)

b) log2x - 13logx + 36 > 0

Lời giải:

a) ĐK: x+1>0 cùng 2-x>0 ⇔ -10,5(x+1) ≤ log2(2-x) ⇔ -log2(x+1)≤ log2(2-x) ⇔ log2(2-x) + log2(x+1) ≥ 0